2-1/8" 7:8 Lobe 5.3 Stage Metal to metal power section

Metal Rotor

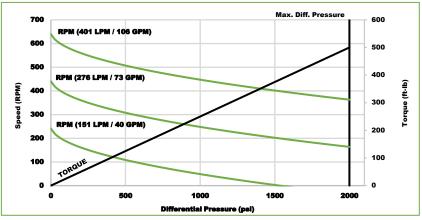
Metal Stator

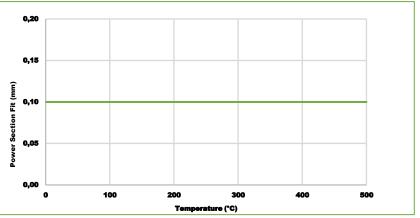
• No rubber, no reline

• Life expectancy between 500-1000 hours

• High corrosion resistance for compatability with oil-based muds, acids, nitrogen, solvents and high chloride fluids

Power section surface hardened for increased longevity


• In-house engineering, production, quality- and performance control


Proprietary technology for maximum performance

- A Orionweg 55 8938 AG Leeuwarden The Netherlands
- T +31 622379750
- W http://www.full-metal-power.com
- E info@full-metal-power.com

Performance Curve*

Power Section Fit Change

Performance Specifications*

	Metric	Imperial	
Flow range	150-400 LPM	40-106 GPM	
Max. operating temperature	500°C	932°F	
Revolutions per unit volume	1,6 RPL	6,04 RPG	
No load speed	239-638 RPM		
Maximum differential pressure	138 Bar	2000 PSI	
Maximum torque	678 Nm	500 ft-lb	
Motor power	31 Kw	42 HP	

* Performance data is for reference only and is subject to change.

Rotor Specifications**

	Metric	Imperial	
Total length	1944mm	76,5in	
Profile length	1794mm	70,6in	
Head length	150mm	5,9in	
Rotor eccentricity	2,4mm	0,09in	
Major diameter	38,4mm	1,51in	
Minor diameter	28,8mm	1,13in	
Head diameter	40,0mm	1,57in	
Material	34CrAINi7-10 (1.8550)		
Weight	13,2 kg	29,0 lbs	

Stator Specifications**

	Metric	Imperial	
Total length	2200mm	86,6in	
Profile length	1794mm	70,6in	
Stator outer diameter	54,0mm	2,13in	
Major diameter	43,2mm	1,70in	
Minor diameter	33,6mm	1,32in	
Material	34CrAINi7-10 (1.8550)		
Weight	19,0 kg	42,0 lbs	

** Custom lengths and materials are available upon request.

Full-Metal-Power sections - operational guidelines

Configuration (lobes/stages)	Motor OD (mm/in)	Power section no load displacement (RPL/RPG)	Material type	Common pumped fluids	Nitrogen	Suspended solids compatibility**	BHT temperature range (°C/°F)
9:10 - 6.2 Stage	43mm (1.69in)	2,71 RPL (10.24 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)
7:8 - 5.7 Stage	54mm (2.13in)	1,44 RPL (5.44 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)
9:10 - 4.0 Stage	73mm (2.88in)	0,58 RPL (2.20 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)
9:10 5.2 Stage	79mm (3.13in)	0,58 RPL (2.20 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)
9:10 4.9 Stage	127mm (5.00in)	0,14 RPL (0.53 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)
9:10 4.5 Stage	175mm (6.89in)	0,08 RPL (0.29 RPG)	34CrAlNi7-10 (1.8550)	Water, brine, diesel, solvents, HCL (5-15%)*	Maximum 75% of total volume	Maximum 1%	500°C (932°F)

* Acid will cause damage to rotor and stator reducing overall longevity and performance.

** Full-Metal-Power sections are susceptible to damage due to abrasives in the drilling medium. Longevity and performance may be affected.

Nitrogen

Although the power sections are capable of running 100% nitrogen or gaseous medium, it is recommended to only run 75% of total volume to lubricate the entire motor assembly.

Motor life

Motor life is affected by Abrasives such as sand content. For best motor performance and life, we recommend the motor be serviced after each use. Stator reuse should be determined by a bore scope examination, measurement, Dyno and the drilling conditions the power section has been exposed to.

Hydrogen Sulfide (H2S)

The materials used to manufacture the Full-Metal-Power sections are typically acceptable in a H2S environment for the exposure times seen by a thru tubing motor.

It is always best to use proper practices when running a motor in a well containing H2S. These may include but not be limited to keeping pH between 7.4 and 8.0, minimizing exposure of tools to H2S environments below 175°F (80°C) and running an oxygen scavenger/corrosion inhibitor as a component of the mud system. We also recommend a complete motor disassembly after each exposure to an H2S environment. This disassembly should include thread inspection and inspection for cracks.